Vacuum Free Cryostat

TII-UnisokuLOGO_350pxVacuum Free Cryostat for Spectroscopy from Japan

About Unisoku/TII Group

CoolSpeK Vacuum free cryostat for liquid samples

Vacuum free cryostat for liquid samples

As a member of Tokyo Instruments, Inc. (TII Group), UNISOKU develops, manufactures and custom-makes the world’s cutting edge research instruments since 1974. It was chosen as one of Japan’s “Global Niche Top 100 Companies” by the Japanese Ministry of Economy, Trade and Industry in March, 2014. It is striving to be the leading company in Japan as “No.1 in Nano-Technology measurement and Photonics”.

Vacuum Free Cryostats for UV-VIS, Fluorescence and Circular Dichroism: USP-203 Series

USP-203 Series of products are stand-alone cryostats. Their light weight and compact footprint allows them to be placed inside most commercial UV-VIS, Fluorescence and CD Spectrometers with proper adaptation. This allows temperature controlled measurements of absorption, fluorescence, or circular dichroism spectra.

The USP-203 Series of products have been used to measure liquid, solid or powder samples.

  • UV-VIS-NIR absorption spectra
  • Transient Absorption spectra and decays
  • Circular Dichroism spectra
  • Photoluminescence/ Fluorescence/ Phosphorescence spectra in UV- VIS- NIR
  • Photoluminescence decays

Outstanding Features

  • Vacuum Free–the cryostat does not require vacuum pumps to operate! No Waiting in the noise of the vacuum pump before starting your experiments.
  • Liquid Sample–no worries! It uses Standard Quartz 10cm x 10cm cuvette!
  • Kinetic Study–great! Reagents can be injected and mixed by the magnetic stirrer, makes it easy for kinetic measurements!
  • Small Volume of samples: adaptor available to accommodate 1mm optical path cuvette!
  • Both Cooling (-80 °C standard, -180 °C conditional) and Heating (+100 °C).
  • Light weight and compact footprint.
Liquid Nitrogen Reservoir: Stainless steel dewar, 2L
Low-Temperature Sample Chamber: Aluminum, Polyurethane foam for thermal insulation
Optical Window: Quartz, 3-way
Suitable Cell: Outer dimension of 12.5 mm × 12.5 mm
Temperature Control: Regulated liquid nitrogen flow
Temperature Range: -80°C (-180°C conditional) ~ +100°C
Volume of Liquid Nitrogen Consumption: 1L/Hour
Temperature Accuracy:  ±1°C or ±0.5% of indicating value, whichever is greater (error of the sensor not included).
Quantity of Dew Condensation: Less than 0.1 OD/hour at -80°C (with Unisoku spectrophotometer)
Temperature Sensor: Resistance thermometer sensor (Pt-100 Class B)
Functions: Two built-in heaters in the main body, one for prevention of dew condensation on optical windows,  another for temperature control.
System Electronics: AC 100-120V 1A 50/60 Hz (transformer will be provided according to the voltage of destination country)
Cryogen Used: Liquid nitrogen
External Size:  H146.5 × W90 × D111 mm (Main Body)

Specifications are subject to change without notification

CryoSpeK UV USP-203-B: Cryostat for UV-VIS Spectrophotometers and Fluorescence Spectrometers

Includes Main Body, Liquid Nitrogen Reservoir, Temperature Controller. Input 100-120V, 50/60Hz

CoolSpeK CD USP-203CD-B: Cryostat for CD Spectrophotometers

Includes Main body, liquid nitrogen Reservoir, Temperature Controller. Input 100-120V, 50/60Hz

  • Magnetic stirrer
  • Quartz Cuvette
  • Adaptor for 1 mm or 2mm light path length cuvette (absorption)
  • Adaptor for 1 mm light path length cuvette (fluorescence)
  • Solid sample holder for transmittance. suitable dimension: Ø10mm or 10 x 10mm, thickness 0.0-3.2mm or 0.7-4.2mm
  • Solid sample holder for fluorescence: suitable dimension: Ø13 x 13mm,  thickness: 0.0-3.2mm or 0.7-4.2mm
  • Adaptors available for most commercial UV-VIS, Fluorescence and CD Spectrometers:

Spectrophotometers:

  • UNISOKU RSP-1000/ TSP-1000
  • Agilent Technologies Agilent 8453/8454
  • Agilent Technologies CARY50/60
  • Agilent Technologies CARY 5000/6000
  • Beckman DU-7400
  • Evolution300
  • Thermo Fisher Scientific: Nicolet 6700 FT-IR spectrometer
  • JASCO V-550/560/570, V-650/660/670
  • JASCO FP-6200/6500/6600/8000
  • JASCO J-720/820
  • JASCO FT/IR-610 spectrometer
  • Hewlett-Packard HP8453
  • HITACHI U-2800/2900/3500
  • HITACHI F-4500/7000
  • Perkin Elmer Lambda Series
  • SHIMADZU UV1800/2000/3000 Series
  • SHIMADZU UV2400/2450/2550
  • SHIMADZU RF-5300
  • SHIMADZU RF-6000
  • SCINCO S-3100

Spectrofluorometers

  • SCINCO FS-2
  • Horiba FluoroMax
  • Horiba Fluorolog
  • PTI QuantaMaster/ TimeMaster/ PicoMaster:
  • Custom-made spectroscopy setups
  • Thermodynamics of chemical reactions
  • Luminescence quantum yields in low temperature glasses
  • CD spectra of chiral molecules
  • Phosphorescence
  • Protein stability
  • Nucleic acid melting
  • Temperature effect on MLCT excited state relaxation pathways
  • Temperature effect on inclusion complexes of cyclodextrins with organic compounds
  • Coordination chemistry at TiO2 surface
  • Photophysical behavior of MLCT photosensitizers
  • Thermal degradation and structural transitions of coordination polymers
  • Phase transition of water trapped in reversed micelles
  • Temperature effect on transient absorption of MLCT complexes
  • Mechanism of biological nitrogen binding and reduction
  • Metal-catalyzed redox reactions
  • Photolysis at low temperature
  • Self-assembly of nucleotides under super-cooled conditions
  • Chemical oxidation
  • Wegeberg, C., Browne, W.R. and McKenzie, C.J. (2018) Catalytic Alkyl Hydroperoxide and Acyl Hydroperoxide Disproportionation by a Nonheme Iron Complex. ACS Catal, 9980-9991.
  • Wallen, C.M., Bacsa, J. and Scarborough, C.C. (2018) Coordination of Hydrogen Peroxide with Late-Transition-Metal Sulfonamido Complexes. Inorg Chem, 57, 4841-4848.
  • Saracini, C., Malik, D.D., Sankaralingam, M., Lee, Y.M., Nam, W. and Fukuzumi, S. (2018) Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. Inorg Chem, 57, 10945-10952.
  • Mews, N.M., Horner, G., Schubert, H. and Berkefeld, A. (2018) Tuning of Thiyl/Thiolate Complex Near-Infrared Chromophores of Platinum through Geometrical Constraints. Inorg Chem, 57, 9670-9682.
  • Masuda, T., Shibuya, Y., Arai, S., Kobayashi, S., Suzuki, S., Kijima, J., Itoh, T., Sato, Y., Nishizawa, S. and Yamaguchi, A. (2018) Effect of Cavity Size of Mesoporous Silica on Short DNA Duplex Stability. Langmuir, 34, 5545-5550.
  • Kijima, J., Shibuya, Y., Katayama, Û.K., Itoh, T., Iwase, H., Fukushima, Y., Kubo, M. and Yamaguchi, A. (2018) Structural Characterization of Myoglobin Molecules Adsorbed within Mesoporous Silicas. J. Phys. Chem. C, 122, 15567-15574.
  • Garakyaraghi, S., McCusker, C.E., Khan, S., Koutnik, P., Bui, A.T. and Castellano, F.N. (2018) Enhancing the Visible-Light Absorption and Excited-State Properties of Cu(I) MLCT Excited States. Inorg Chem, 57, 2296-2307.
  • Duan, P.C., Manz, D.H., Dechert, S., Demeshko, S. and Meyer, F. (2018) Reductive O2 Binding at a Dihydride Complex Leading to Redox Interconvertible mu-1,2-Peroxo and mu-1,2-Superoxo Dinickel(II) Intermediates. J Am Chem Soc, 140, 4929-4939.
  • Wendel, D., Porzelt, A., Herz, F.A.D., Sarkar, D., Jandl, C., Inoue, S. and Rieger, B. (2017) From Si(II) to Si(IV) and Back: Reversible Intramolecular Carbon-Carbon Bond Activation by an Acyclic Iminosilylene. J Am Chem Soc, 139, 8134-8137.
  • Wendel, D., Szilvasi, T., Jandl, C., Inoue, S. and Rieger, B. (2017) Twist of a Silicon-Silicon Double Bond: Selective Anti-Addition of Hydrogen to an Iminodisilene. J Am Chem Soc, 139, 9156-9159.
  • Sampaio, R.N., DiMarco, B.N. and Meyer, G.J. (2017) Activation Energies for Electron Transfer from TiO2 to Oxidized Dyes: A Surface Coverage Dependence Correlated with Lateral Hole Hopping. ACS Energy Lett., 2, 2402-2407.
  • Mews, N.M., Berkefeld, A., Horner, G. and Schubert, H. (2017) Controlling Near-Infrared Chromophore Electronic Properties through Metal-Ligand Orbital Alignment. J Am Chem Soc, 139, 2808-2815.
  • Matoba, Y., Kihara, S., Muraki, Y., Bando, N., Yoshitsu, H., Kuroda, T., Sakaguchi, M., Kayama, K., Tai, H., Hirota, S., Ogura, T. and Sugiyama, M. (2017) Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Biochemistry, 56, 5593-5603.
  • Kindermann, N., Gunes, C.J., Dechert, S. and Meyer, F. (2017) Hydrogen Atom Abstraction Thermodynamics of a mu-1,2-Superoxo Dicopper(II) Complex. J Am Chem Soc, 139, 9831-9834.
  • Travieso-Puente, R., Broekman, J.O., Chang, M.C., Demeshko, S., Meyer, F. and Otten, E. (2016) Spin-Crossover in a Pseudo-tetrahedral Bis(formazanate) Iron Complex. J Am Chem Soc, 138, 5503-5506.
  • Sengupta, D., Bhattacharjee, R., Pramanick, R., Rath, S.P., Saha Chowdhury, N., Datta, A. and Goswami, S. (2016) Exclusively Ligand-Mediated Catalytic Dehydrogenation of Alcohols. Inorg Chem, 55, 9602-9610.
  • Garakyaraghi, S., Crapps, P.D., McCusker, C.E. and Castellano, F.N. (2016) Cuprous Phenanthroline MLCT Chromophore Featuring Synthetically Tailored Photophysics. Inorg Chem, 55, 10628-10636.
  • DiMarco, B.N., Motley, T.C., Balok, R.S., Li, G., Siegler, M.A., O’Donnell, R.M., Hu, K. and Meyer, G.J. (2016) A Distance Dependence to Lateral Self-Exchange across Nanocrystalline TiO2. A Comparative Study of Three Homologous RuIII/II Polypyridyl Compounds. J. Phys. Chem. C, 120, 14226-14235.
  • Creutz, S.E. and Peters, J.C. (2016) Spin-State Tuning at Pseudo-tetrahedral d(6) Ions: Spin Crossover in [BP3]Fe(II)-X Complexes. Inorg Chem, 55, 3894-3906.
  • Cao, R., Saracini, C., Ginsbach, J.W., Kieber-Emmons, M.T., Siegler, M.A., Solomon, E.I., Fukuzumi, S. and Karlin, K.D. (2016) Peroxo and Superoxo Moieties Bound to Copper Ion: Electron-Transfer Equilibrium with a Small Reorganization Energy. J Am Chem Soc, 138, 7055-7066.
  • Cao, R., Elrod, L.T., Lehane, R.L., Kim, E. and Karlin, K.D. (2016) A Peroxynitrite Dicopper Complex: Formation via Cu-NO and Cu-O2 Intermediates and Reactivity via O-O Cleavage Chemistry. J Am Chem Soc, 138, 16148-16158.
  • Bellows, S.M., Arnet, N.A., Gurubasavaraj, P.M., Brennessel, W.W., Bill, E., Cundari, T.R. and Holland, P.L. (2016) The Mechanism of N-N Double Bond Cleavage by an Iron(II) Hydride Complex. J Am Chem Soc, 138, 12112-12123.
  • Alagesana, M., Kanagaraja, K., Wanb, S., Suna, H., Suc, D., Zhong, Z., Zhou, D., Wua, W., Gao, G., Zhang, H. and Cheng Yanga. (2016) Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron tetrahedral coordination cage. Journal of Photochemistry and Photobiology A: Chemistry, 331, 95–101.
  • Zhang, M., El-Roz, M., Frei, H., Mendoza-Cortes, J.L., Head-Gordon, M., Lacy, D.C. and Peters, J.C. (2015) Visible Light Sensitized CO2 Activation by the Tetraaza [CoIIN4H(MeCN)]2+ Complex Investigated by FT-IR Spectroscopy and DFT Calculations. The Journal of Physical Chemistry C , 119, 4645-4654.
  • XinYue Jiang, Ken Terao, Woojung Chung and Naito, M. (2015) Chain dimensions and intermolecular interactions of polysilanes bearing alkyl side groups over the UV thermochromic temperature. Polymer, 68, 221-226.
  • Tanushi, A., Kusamoto, T., Hattori, Y., Takada, K. and Nishihara, H. (2015) Spin-Reconstructed Proton-Coupled Electron Transfer in a Ferrocene-Nickeladithiolene Hybrid. Am. Chem. Soc., 137, 6448-6451.
  • Tanimoto, H., Yokoyama, K., Mizutani, Y., Shitaoka, T., Morimoto, T., Nishiyama, Y. and Kakiuchi, K. (2015) Synthesis of α-Substituted Enoximes with Nucleophiles via Nitrosoallenes.  Org. Chem.
  • Soler, M., Figueras, E., Serrano-Plana, J., González-Bártulos, M., Massaguer, A., Company, A., Martínez, M.Ã.n., Malina, J., Brabec, V., Feliu, L., Planas, M., Ribas, X. and Costas, M. (2015) Design, Preparation, and Characterization of Zn and Cu Metallopeptides Based On Tetradentate Aminopyridine Ligands Showing Enhanced DNA Cleavage Activity. Inorg. Chem., 54, 10542-10558.
  • Snyder, J.A. and Bragg, A.E. (2015) Structural Control of Nonadiabatic Bond Formation: The Photochemical Formation and Stability of Substituted 4a,4b-Dihydrotriphenylenes. Phys. Chem. A, 119, 3972-3985.
  • Shokri, A. and Que, L. (2015) Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase. Am. Chem. Soc., 137, 7686-7691.
  • Prakash, J., Rohde, G.T., Meier, K.K., Jasniewski, A.J., Van Heuvelen, K.M., Münck, E. and Que, L. (2015) Spectroscopic Identification of an FeIII Center, not FeIV, in the Crystalline Sc−O−Fe Adduct Derived from [FeIV(O)(TMC)]2+.  Am. Chem. Soc., 137, 3478-3481.
  • Neu, H.M., Jung, J., Baglia, R.A., Siegler, M.A., Ohkubo, K., Fukuzumi, S. and Goldberg, D.P. (2015) Light-Driven, Proton-Controlled, Catalytic Aerobic C−H Oxidation Mediated by a Mn(III) Porphyrinoid Complex. Am. Chem. Soc., 137, 4614-4617.
  • Mitra, M., Nimir, H., Demeshko, S., Bhat, S.S., Malinkin, S.O., Haukka, M., Lloret-Fillol, J., Lisensky, G.C., Meyer, F., Shteinman, A.A., Browne, W.R., Hrovat, D.A., Richmond, M.G., Costas, M. and Nordlander, E. (2015) Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. Inorg. Chem., 54, 7152-7164.
  • Martínez-Periñán, E., Gennari, M., Revenga-Parra, M., Abad, J.M., Mateo-Martí, E., Pariente, F., Castillo, O., Mas-Ballesté, R., Zamora, F. and Lorenzo, E. (2015) Highly dense nickel hydroxide nanoparticles catalyst electrodeposited from a novel Ni(II) paddle–wheel complex. Journal of Catalysis, 329, 22-31.
  • Kumar, P., Lee, Y.-M., Park, Y.J., Siegler, M.A., Karlin, K.D. and Nam, W. (2015) Reactions of Co(III)–Nitrosyl Complexes with Superoxide and Their Mechanistic Insights.  Am. Chem. Soc., 137, 4284-4287.
  • Kishimoto, F., Imai, T., Fujii, S., Mochizuki, D., Maitani, M.M., Suzuki, E. and Wada, Y. (2015) Microwave-enhanced photocatalysis on CdS quantum dots–Evidence of acceleration of photoinduced electron transfer. Sci Rep, 5, 11308.
  • Kim, S., Lee, J.Y., Cowley, R.E., Ginsbach, J.W., Siegler, M.A., Solomon, E.I. and Karlin, K.D. (2015) A N3S(thioether)-Ligated CuII-Superoxo with Enhanced Reactivity. Am. Chem. Soc., 137, 2796-2799.
  • Kim, J., Shin, B., Kim, H., Lee, J., Kang, J., Yanagisawa, S., Ogura, T., Masuda, H., Ozawa, T. and Cho, J. (2015) Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes. Inorg. Chem., 54, 6176-6183.
  • Kim, S., Ginsbach, J.W., Lee, J.Y., Peterson, R.L., Liu, J.J., Siegler, M.A., Sarjeant, A.A., Solomon, E.I. and Karlin, K.D. (2015) Amine Oxidative N-Dealkylation via Cupric Hydroperoxide Cu-OOH Homolytic Cleavage Followed by Site-Specific Fenton Chemistry.  Am. Chem. Soc., 137, 2867-2874.
  • Kakuda, S., Rolle, C.J., Ohkubo, K., Siegler, M.A., Karlin, K.D. and Fukuzumi, S. (2015) Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate.  Am. Chem. Soc., 137, 3330-3337.
  • Hematian, S., Kenkel, I., Shubina, T.E., Dürr, M., Liu, J.J., Siegler, M.A., Ivanovic-Burmazovic, I. and Karlin, K.D. (2015) Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing μ-oxo Heme-FeIII–O–CuII(L) Constructs.  Am. Chem. Soc., 137, 6602-6615.
  • England, J., Prakash, J., Cranswick, M.A., Mandal, D., Guo, Y., Münck, E., Shaik, S. and Que, L. (2015) Oxoiron(IV) Complex of the Ethylene-Bridged Dialkylcyclam Ligand Me2EBC. Inorg. Chem., 54, 7828-7839.
  • Eisenhart, R.J., Carlson, R.K., Boyle, K.M., Gagliardi, L. and Lu, C.C. (2015) Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel. Inorganica Chimica Acta, 424, 336-344.
  • Ding, M., Rouzières, M., Losovyj, Y., Pink, M., Clérac, R. and Smith, J.M. (2015) Partial Nitrogen Atom Transfer: A New Synthetic Tool to Design Single-Molecule Magnets. Inorg. Chem., 54, 9075-9080.
  • Dhuri, S.N., Cho, K.-B., Lee, Y.-M., Shin, S.Y., Kim, J.H., Mandal, D., Shaik, S. and Nam, W. (2015) Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme RuIVO Complex.  Am. Chem. Soc., 137, 8623-8632.
  • Codola, Z., Gomez, L., Kleespies, S.T., Que, L., Jr., Costas, M. and Lloret-Fillol, J. (2015) Evidence for an oxygen evolving iron-oxo-cerium intermediate in iron-catalysed water oxidation. Nat Commun, 6, 5865.
  • Chantarojsiri, T., Sun, Y., Long, J.R. and Chang, C.J. (2015) Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity. Inorg. Chem., 54, 5879-5887.
  • Biswas, A.N., Puri, M., Meier, K.K., Oloo, W.N., Rohde, G.T., Bominaar, E.L., Münck, E. and Que, L. (2015) Modeling TauD-J: A High-Spin Nonheme Oxoiron(IV) Complex with High Reactivity toward C–H Bonds.  Am. Chem. Soc., 137, 2428-2431.
  • Al-Afyouni, M.H., Suturina, E., Pathak, S., Atanasov, M., Bill, E., DeRosha, D.E., Brennessel, W.W., Neese, F. and Holland, P.L. (2015) Spin Isomers and Ligand Isomerization in a Three-Coordinate Cobalt(I) Carbonyl Complex.  Am. Chem. Soc., 137, 10689-10699.
  • Yao, J., Yan, Z., Ji, J., Wu, W., Yang, C., Nishijima, M., Fukuhara, G., Mori, T. and Inoue, Y. (2014) Ammonia-Driven Chirality Inversion and Enhancement in Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate Mediated by Diguanidino-γ-cyclodextrin. Journal of the American Chemical Society, 136, 6916-6919.
  • Suzuki, A. and Yui, H. (2014) Crystallization of Confined Water Pools with Radii Greater Than 1 nm in AOT Reverse Micelles. Langmuir, 30, 7274-7282.
  • Schley, N.D. and Fu, G.C. (2014) Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: A Mechanistic Investigation. Journal of the American Chemical Society, 136, 16588-16593.
  • Rittle, J., McCrory, C.C.L. and Peters, J.C. (2014) A 106-Fold Enhancement in N2-Binding Affinity of an Fe2(ì-H)2 Core upon Reduction to a Mixed-Valence FeIIFeI State. Journal of the American Chemical Society, 136, 13853-13862.
  • Ohshita, J., Murakami, K., Tanaka, D., Ooyama, Y., Mizumo, T., Kobayashi, N., Higashimura, H., Nakanishi, T. and Hasegawa, Y. (2014) Synthesis of Group 14 Dipyridinometalloles with Enhanced Electron-Deficient Properties and Solid-State Phosphorescence. Organometallics, 33, 517-521.
  • McCusker, C.E., Chakraborty, A. and Castellano, F.N. (2014) Excited State Equilibrium Induced Lifetime Extension in a Dinuclear Platinum(II) Complex. The Journal of Physical Chemistry A, 118, 10391-10399.
  • Kawai, M., Yamaguchi, T., Masaoka, S., Tani, F., Kohzuma, T., Chiang, L., Storr, T., Mieda, K., Ogura, T., Szilagyi, R.K. and Shimazaki, Y. (2014) Influence of Ligand Flexibility on the Electronic Structure of Oxidized NiIII-Phenoxide Complexes. Inorganic Chemistry, 53, 10195-10202.
  • Arafune, H., Yamaguchi, A., Namekawa, M., Sato, Y., Itoh, T., Yoshida, R. and Teramae, N. (2014) Trinucleotide duplex formation inside a confined nanospace under supercooled conditions. Nat Commun, 5, 5151.
  • Yamaguchi, A. and Denda, T. (2013) Inclusion Complexation of γ-Cyclodextrin and Coumarin Dye inside Alumina Nanopores over a Temperature Range of 303-233 K. The Journal of Physical Chemistry C, 117, 17567-17573.
  • Tan, Y.S., Sudlow, A.L., Molloy, K.C., Morishima, Y., Fujisawa, K., Jackson, W.J., Henderson, W., Halim, S.N.B.A., Ng, S.W. and Tiekink, E.R.T. (2013) Supramolecular Isomerism in a Cadmium Bis(N-Hydroxyethyl, N-isopropyldithiocarbamate) Compound: Physiochemical Characterization of Ball (n = 2) and Chain (n = ‡) Forms of {Cd[S2CN(iPr)CH2CH2OH]2Esolvent}n. Crystal Growth & Design, 13, 3046-3056.
  • Tamaki, Y., Koike, K., Morimoto, T., Yamazaki, Y. and Ishitani, O. (2013) Red-Light-Driven Photocatalytic Reduction of CO2 using Os(II)-Re(I) Supramolecular Complexes. Inorganic Chemistry, 52, 11902-11909.
  • McCusker, C.E. and Castellano, F.N. (2013) Design of a Long-Lifetime, Earth-Abundant, Aqueous Compatible Cu(I) Photosensitizer Using Cooperative Steric Effects. Inorganic Chemistry, 52, 8114-8120.
  • Johansson, P.G., Kopecky, A., Galoppini, E. and Meyer, G.J. (2013) Distance Dependent Electron Transfer at TiO2 Interfaces Sensitized with Phenylene Ethynylene Bridged RuII–Isothiocyanate Compounds. Journal of the American Chemical Society, 135, 8331-8341.
  • Inhulsen, I., Akiyama, N., Tsutsumi, K., Nishiyama, Y. and Kakiuchi, K. (2013) Highly diastereodifferentiating and regioselective [2+2]-photoreactions using methoxyaromatic menthyl cyclohexenone carboxylates. Tetrahedron, 69, 782-790.
  • Hu, K., Robson, K.C.D., Beauvilliers, E.E., Schott, E., Zarate, X., Arratia-Perez, R., Berlinguette, C.P. and Meyer, G.J. (2013) Intramolecular and Lateral Intermolecular Hole Transfer at the Sensitized TiO2 Interface. Journal of the American Chemical Society, 136, 1034-1046.
  • Donnell, R.M., Johansson, P.G., Abrahamsson, M. and Meyer, G.J. (2013) Excited-State Relaxation of Ruthenium Polypyridyl Compounds Relevant to Dye-Sensitized Solar Cells. Inorganic Chemistry, 52, 6839-6848.
  • Chen, M.S., Lee, O.P., Niskala, J.R., Yiu, A.T., Tassone, C.J., Schmidt, K., Beaujuge, P.M., Onishi, S.S., Toney, M.F., Zettl, A. and Frechet, J.M.J. (2013) Enhanced Solid-State Order and Field-Effect Hole Mobility through Control of Nanoscale Polymer Aggregation. Journal of the American Chemical Society, 135, 19229-19236.
  • Achey, D. and Meyer, G.J. (2013) Ligand Coordination and Spin Crossover in a Nickel Porphyrin Anchored to Mesoporous TiO2 Thin Films. Inorganic Chemistry, 52, 9574-9582.
  • Asami, K., Tsukidate, K., Iwatsuki, S., Tani, F., Karasawa, S., Chiang, L., Storr, T., Thomas, F. and Shimazaki, Y. (2012) New Insights into the Electronic Structure and Reactivity of One-Electron Oxidized Copper(II)-(Disalicylidene)diamine Complexes. Inorganic Chemistry, 51, 12450-12461.